Radio propagation prediction using deep neural network and building occupancy estimation

Author:

Inoue Kazuya1,Ichige Koichi1,Nagao Tatsuya2,Hayashi Takahiro2

Affiliation:

1. Department of Electrical and Computer Engineering, Yokohama National University

2. KDDI Research Inc.

Publisher

Institute of Electronics, Information and Communications Engineers (IEICE)

Subject

General Medicine

Reference5 articles.

1. [1] T. Imai, K. Kitao, and M. Inomata, “Radio propagation prediction model using convolution neural networks by deep learning,” Proc. European Conference on Antennas and Propagation, pp. 1-5, April 2019.

2. [2] T. Hayashi, T. Nagao, and S. Ito, “A study on the variety and size of input data for radio propagation prediction using a deep neural network,” European Conference on Antennas and Propagation, 2020. DOI: 10.23919/EuCAP48036. 2020.9135876

3. [3] T. Nagao and T. Hayashi, “Study on radio propagation prediction by machine learning using urban structure maps,” European Conference on Antennas and Propagation, 2020. DOI: 10.23919/EuCAP48036.2020.9135353

4. [4] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, vol.9351, pp. 234-241, Oct. 2015. DOI: 10.1007/978-3-319-24574-4_28

5. [5] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet classification with deep convolutional neural networks,” Proc. Advances in Neural Information Processing Systems, pp. 1097-1105, 2012.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature Extraction Using Hough Transform in Radio Propagation Estimation;2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall);2023-10-10

2. A Deep-Learning Method for Path Loss Prediction Using Geospatial Information and Path Profiles;IEEE Transactions on Antennas and Propagation;2023-09

3. Low-Cost Learning-Based Path Loss Estimation Using Correlation Graph CNN;IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences;2023-08-01

4. Low-Cost Path Loss Estimation Using Correlation Graph CNN with Novel Feature Parameters;2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring);2023-06

5. Learning-Based Path Loss Estimation Using Multiple Spatial Data and System Parameters;2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall);2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3