1. [1] T. Imai, K. Kitao, and M. Inomata, “Radio propagation prediction model using convolution neural networks by deep learning,” Proc. European Conference on Antennas and Propagation, pp. 1-5, April 2019.
2. [2] T. Hayashi, T. Nagao, and S. Ito, “A study on the variety and size of input data for radio propagation prediction using a deep neural network,” European Conference on Antennas and Propagation, 2020. DOI: 10.23919/EuCAP48036. 2020.9135876
3. [3] T. Nagao and T. Hayashi, “Study on radio propagation prediction by machine learning using urban structure maps,” European Conference on Antennas and Propagation, 2020. DOI: 10.23919/EuCAP48036.2020.9135353
4. [4] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, vol.9351, pp. 234-241, Oct. 2015. DOI: 10.1007/978-3-319-24574-4_28
5. [5] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet classification with deep convolutional neural networks,” Proc. Advances in Neural Information Processing Systems, pp. 1097-1105, 2012.