1. [1] P. Erdős and G. Szekeres, “A combinatorial problem in geometry,” Compositio Math., vol.2, pp.463-470, 1935.
2. [2] P. Erdős and G. Szekeres, “On some extremum problems in elementary geometry,” Ann. Univ. Sci. Budapest Eötvös Sect. Math., vol.3-4, pp.53-62, 1961.
3. [3] G. Szekeres and L. Peters, “Computer solution to the 17-point Erdős-Szekeres problem,” ANZIAM J., vol.48, no.2, pp.151-164, 2006. 10.1017/s144618110000300x
4. [4] G. Tóth and P. Valtr, “The Erdős-Szekeres theorem: Upper boiunds and related results,” Combinatorial and Computational Geometry, eds. J.E. Goodman, J. Pach, and E. Welzl, MSRI, vol.52, pp.557-568, Cambridge University Press, 2005.
5. [5] P. Erdős, “Some more problems on elementary geometry,” Austral. Math. Soc. Gaz., vol.5, pp.52-54, 1978.