pH-dependent release properties of curcumin encapsulated alginate nanoparticles in skin and artificial sweat

Author:

Shakoor I.F.,Pamunuwa G.K.ORCID,Karunaratne D.N.

Abstract

Topical skin application of curcumin is challenging due to the low solubility and poor stability, including fast photodegradation, of this bioactive compound. Therefore, curcumin encapsulated alginate (CU-Al) nanoparticles were prepared by the ionic gelation method followed by freeze drying to determine the efficacy of alginate in facilitating curcumin release. Evaluation of the release of curcumin from the encapsulate in the presence of artificial sweat (pH 4.7) and skin (pH 5.5), about which the literature is meagre, was carried out after particle size characterization. CU-Al nanoparticles were in the nano-range (186.8 nm), assimilated a negative zeta-potential value (-15.4 ± 8.13 mV), and displayed a high encapsulation efficiency (94.55 ± 0.53%). The release of encapsulated curcumin at pH 5.5 (max. 64%) and at pH 4.7 (max. 27%) were significantly different. In pH 5.5 and pH 4.7, the release profiles of encapsulated curcumin fitted best with the Weibull (followed an anomalous transport mechanism) and Gompertz (followed a super case II transport mechanism) models respectively, displaying sigmoidal release patterns. Diffusion and polymer relaxation/swelling based release at pH 5.5 and rapid polymer relaxation/erosion based release at pH 4.7 have governed the encapsulated curcumin release. The results indicated that CU-Al nanoparticles may be utilized to facilitate controlled and prolonged release of curcumin in both skin and artificial sweat, thereby functioning as a promising novel delivery vehicle for curcumin. However, skin deposition or penetration may be required for yielding a satisfactory topical administration of curcumin during sweating. 

Publisher

Sri Lanka Journals Online

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3