1. Bahuleyan, H. (2018). Music Genre Classification Using Machine Learning Techniques, ArXiv:1804.01149v1, 1(1). https://doi.org/10.48550/arXiv.1804.01149
2. Chen, Y., Guo, Q., Liang, X., Wang, J., Qian, Y. (2019). Environmental Sound Classification with Dilated Convolutions, Elsevier Applied Acoustics. 148(1). 123-132, https://dig.sxu.edu.cn/docs/2019-03/2d147cee7 cfb4f3eb25ee73f6e6dd3de.pdf
3. Chillara, S., Kavitha, A. S., Neginhal, S. A., Haldia, S., Vidyullatha, K. S. (2019). Music Genre Classification Using Machine Learning Algorithms: A Comparison. International Research Journal of Engineering and Technology, 6(5), 851-858, https://www.irjet.net/archives/V6/i5/IRJET-V6I5174.pdf
4. Davis, N., Suresh, K. (2018). Environmental sound classification using deep convolutional neural networks and data augmentation, IEEE Recent Advances in Intelligent Computational Systems (RAICS), (pp. 41-45). https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8635051&tag=1
5. Demir, F., Türkoğlu, M., Aslan, M., Sengur, A. (2020). A New Pyramidal Concatenated CNN Approach For Environmental Sound Classification, Elsevier, 170(2020), 7. https://www.sciencedirect.com/science/article/ pii/S0003682X20306241