Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative

Author:

MUHAMMET Sinan Mithat1ORCID

Affiliation:

1. GAZİ ÜNİVERSİTESİ, TEKNİK BİLİMLER MESLEK YÜKSEKOKULU, MALZEME VE MALZEME İŞLEME TEKNOLOJİLERİ BÖLÜMÜ

Abstract

The title compound (2,2'-(piperazine-1,4-diyl)bis(N'-((E)-5-chloro-2-hydroxybenzylidene) acetohydrazide) (5-ClPAH) was synthesized by reacting 1,4-Piperazinediacetic acid, 1,4-dihydrazide and 5 -Chloro-2-hydroxybenzaldehyde. Mass spectrometry, 1H, 13C-NMR, IR results of the synthesized compound were examined. Many information about physical and chemical properties of 5-ClPAH can be obtained by theoretical calculations. Density functional theory (DFT) is widely used theoretical method for predicting of chemical structures. The structure was optimized using DFT/6311G method with GAUSSIAN09. Frontier Molecular Orbitls (HOMO and LUMO) energies were calculated. Global reactivity descriptors and also electrophilic and nucleophilic regions were defined by molecular electrostatic potential surface. Antibacterial and fungal activity were evaluated.

Publisher

Gazi University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3