Machine Learning Techniques for the Classification of IoT-Enabled Smart Irrigation Data for Agricultural Purposes

Author:

IORLİAM Aamo1,BUM Sylvester,AONDOAKAA Iember S.,IORLIAM Iveren Blessing,SHEHU Yahaya

Affiliation:

1. Benue State University, Makurdi

Abstract

To support farming year-round, a variety of smart IoT irrigation devices have recently been developed. It is crucial to forecast the soil moisture of agricultural farms so as to produce high yields since the high yields depends on the efficiency of water supply on farmlands. In smart irrigation, anytime water is needed on the farms, the smart pumps switch on to pump the required water so as to prevent the crops from drying up. The smart pumps also shut down if the farms have the ideal level of soil moisture, preventing over-flooding of the fields. Data is generated when the smart pumps are ON or OFF at any given time. Therefore, it is crucial to classify the data produced by smart IoT-enabled irrigation devices when these devices are ON or OFF. In this paper, the soil moisture, temperature, humidity, and time are used as inputs into machine learning techniques for classification. These machine learning techniques include logistic regression, random forest, support vector machine, and convolutional neural network. According to experimental findings, the accuracy of the logistic regression was 71.76%, that of the random forest was 99.98%, that of the support vector machine was 90.21%, and that of the convolutional neural network was 98.23. Based on the high accuracy that the random forest attained, it has more potential to help in assessing smart irrigation conditions (wet or dry) in an optimized manner.

Publisher

Gazi University

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Analysis of Irrigation Management for Crops using Machine Learning Algorithms;2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC - ROBINS);2024-04-17

2. Hybrid ABC-WOA based Machine Learning Approach for Smart Irrigation System;2024 2nd International Conference on Networking and Communications (ICNWC);2024-04-02

3. Water Resource Optimization by Using a Hyper Parameter Tuned LSTM of a Smart Agriculture;2024 International Conference on Emerging Smart Computing and Informatics (ESCI);2024-03-05

4. EcoSprout: Machine Learning-Powered Smart Sprinkler System;2024 International Conference on Emerging Smart Computing and Informatics (ESCI);2024-03-05

5. The application of machine learning techniques for smart irrigation systems: A systematic literature review;Smart Agricultural Technology;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3