EQUATIONS OVER DIRECT POWERS OF ALGEBRAIC STRUCTURES IN RELATIONAL LANGUAGES
-
Published:2021
Issue:53
Volume:
Page:5-11
-
ISSN:2071-0410
-
Container-title:Prikladnaya Diskretnaya Matematika
-
language:
-
Short-container-title:Applied Discrete Mathematics
Abstract
For a semigroup S (group G) we study relational equations and describe all semigroups S with equationally Noetherian direct powers. It follows that any group G has equationally Noetherian direct powers if we consider G as an algebraic structure of a certain relational language. Further we specify the results as follows: if a direct power of a finite semigroup S is equationally Noetherian, then the minimal ideal Ker(S) of S is a rectangular band of groups and Ker(S) coincides with the set of all reducible elements
Publisher
Tomsk State University
Subject
Applied Mathematics,Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Signal Processing,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On equationally Noetherian predicate structures;journal of Groups, complexity, cryptology;2024-07-17