Investigation of nonisothermal two-dimensional filtration in multylayer reservoir

Author:

Islamov Denis F., ,Ramazanov Ayrat Sh.,

Abstract

The problem of an unsteady temperature field during two-dimensional fluid filtration in a multilayer reservoir is investigated taking into account the barothermal effect, radial and vertical permeability inhomogeneities. The results of comparing the analytical and numerical calculations of the temperature changes of the fluid flowing from the reservoir for two various models of reservoir heterogeneity are presented. From the obtained results it follows that 1. The presence of radial inhomogeneity of permeability in the near-well zone of the layered formation leads to fluid flows between the layers, which affects the temperature change rate of the liquid flowing from individual layers. 2. Non-stationary temperature profiles over the thickness of the layered formation at low inflow times contain information about the flows between the layers due to radial inhomogeneity in the near-well zone of the formation. 3. Flows between layers lead to large errors in solving the inverse problem of estimating the distribution of permeability in the reservoir based on non-stationary temperature data. 4. The presence of flows between the layers does not exclude the possibility of estimating the radius of the contamination zone. 5. To correctly account for the influence of flows between layers when calculating the nonstationary temperature in a layered formation with a disturbed near-well zone, it is necessary either to use a two-dimensional numerical model of non-isothermal filtration or to change the algorithm for correcting the layer’s flow rate for short and long inflow times in the onedimensional analytical model.

Publisher

Tomsk State University

Subject

Mechanical Engineering,Mechanics of Materials,General Mathematics,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of the temperature distribution in a heterogeneous reservoir during fluid filtration, taking into account thermodynamic effects;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2023-12-25

2. Investigation of the temperature distribution in a heterogeneous reservoir during fluid filtration, taking into account thermodynamic effects;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2023-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3