MATHEMATICAL MODELING OF THE METALLIZED SOLID PROPELLANT IGNITION BY A HIGH-TEMPERATURE CONVECTIVE FLOW

Author:

V.A. Poryazov, ,A.Yu. Krainov,

Abstract

This paper presents a mathematical model and a methodology to calculate stationary combustion of a metallized solid propellant with aluminum additives ignited by a hightemperature convective flow. The study considers the ignition of a semi-infinite slab of the metallized solid propellant which is blown over by an unlimited high-temperature flow. A boundary-layer approximation is used to develop the ignition model. The high-temperature blowing effect is taken into account in the model by means of turbulent heat and mass transfer. The paper provides a numerical and theoretical analysis on the impact of the velocity and temperature of the convective flow on the ignition time delay and the stationary combustion mode establishment. The analysis shows that the proposed approach allows calculating the time of the ignition delay and stationary combustion mode establishment for the metallized solid propellant. Moreover the ignition delay and the period of the stationary combustion mode establishment are found to be controlled by both the velocity and temperature of the convective flow.

Publisher

Tomsk State University

Subject

Mechanical Engineering,Mechanics of Materials,General Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3