Application of machine learning methods for the classification of asteroid resonance motion

Author:

Galushina Tatyana Yu., ,Nikolaeva Elizaveta A.,Krasavin Dmitriy S.,Lenter Oksana N., , ,

Abstract

When studying the resonant asteroid dynamics, it is necessary to classify time series of critical arguments on circulation, libration, or mixed case depending on their behavior. It is logical to use modern methods of machine learning to automatize this process. Earlier, a similar problem was solved for artificial satellites of the Earth. The purpose of this paper is to adapt the software attended for distinguishing resonant and nonresonant motion of satellites to solving asteroid dynamics problems. To achieve this goal, it is necessary to modify the program code and to train the created model on time rows obtained during the study of the asteroid orbital evolution. Operation of the modified software can be divided into three stages. At the first stage, to simplify the model-classifier, we make coding of time series of asteroid resonant arguments by vectors of lower dimension using an artificial neural network - an autoencoder. The second stage includes automatic clustering time series of asteroid resonant arguments by the HDBSCAN method (Hierarchical Density-Based Spatial Clustering of Applications with Noise) and their manual labeling to learn the classifier. At the third stage, based on the obtained training set, the artificial neural network-classifier is learned. The results of the classifier operation are estimated by visual comparison of graphs of the time series and received assessments. We may conclude that the classifier works correctly in most cases; some inaccuracies are observed in case of extreme amplitude and in the mixed case when libration passes to circulation. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Publisher

Tomsk State University

Subject

Mechanical Engineering,Mechanics of Materials,General Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3