Methods for determining the drag coefficient at gas injection from the surface of spherical particle

Author:

Arkhipov Vladimir A., ,Basalaev Sergey A.,Perfllieva Ksenia G.,Polenchuk Sergey N.,Usanina Anna S., , , ,

Abstract

New methods for studying the effect of gas injection from the surface of a solid spherical particle on its drag coefficient in the transient and self-similar regimes of flow around the particle have been presented. An advantage of the proposed methods is the ability to isolate in a pure form the effect of the mass flux from the particle surface (without the effect of other factors, for example, particle acceleration) on the drag coefficient. New results of an experimental study of the effect of air flow blowing on the drag coefficient of a solid perforated sphere in the Reynolds number range Re = 133÷9900 have been presented. It has been shown that the drag coefficient decreases when air is blown from the particle surface. As the Reynolds number Re increases, the drag coefficient CD upon gas injection in the transient flow regime decreases to a certain critical value corresponding to the onset of the self-similar regime. At the onset of the selfsimilar regime (reaching the critical value of CD), the drag coefficient increases with an increase in the Reynolds number and asymptotically tends to a constant value CD = 0.44. However, the opposite effect has been found for a small diameter of the particle (D = 1 cm) at a blowing velocity ue ≥ 1.3 m/s: an increase in the drag coefficient of the particle CD at air efflux from the particle surface in comparison with the drag coefficient value in the absence of gas flow injection (ue = 0 m/s). This is apparently associated with a change in the characteristics of the boundary layer of the particle due to the rearrangement of the flow profile near the spherical particle surface caused by a decrease in its size. An empirical dependence of the drag coefficient of a solid sphere on the ratio of the velocity of injection from the surface of the particle to the velocity of blowing CD = 0.15 + (0.44 - 0.15)/ (1 + 9ū/53.8) (with the coefficient of determination R2 = 0.89) has been obtained for a self-similar particle regime flow. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Publisher

Tomsk State University

Subject

Mechanical Engineering,Mechanics of Materials,General Mathematics,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3