Sloshing of a liquid fuel in toroidal tanks with account for capillary effect

Author:

Yu Zhao Kai,

Abstract

A numerical approach is proposed to solve the linear sloshing problem of an incompressible inviscid liquid with account for surface tension effects, which are predominant in the low-gravity environment. A variational formulation is derived by the linearization of motion equations for the liquid near its initial equilibrium state with consideration of a pressure drop on the free surface and a free-end boundary condition on the contact line. The continuous problem domain is discretized by the finite element method. After discretization, the classical generalized eigenvalue problem is obtained, whose solutions are the natural frequencies and mode shapes. Several examples show the effect of the Bond number and the fluid-filled volume on the liquid behavior in toroidal tanks. A comparison of numerical results with experimental measurements under ground conditions reveals that under microgravity condition, the surface tension force and the boundary condition on the contact line play an important role when determining the natural frequencies and mode shapes of the liquid sloshing. Each fluid-filled volume has its own characteristic Bond number, above which the natural frequencies approximate to the experimental values obtained under ground conditions. The presented results can be used in the coupling dynamic analysis of a spacecraft with propellant tanks. The author is grateful to the supervisor associate professor A.N. Tem-nov for help in formulating the problem and discussion of the results of the work.

Publisher

Tomsk State University

Subject

Mechanical Engineering,Mechanics of Materials,General Mathematics,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3