EXPLICIT TRANSFORMATION OF THE RICCATI EQUATION AND OTHER POLYNOMIAL ODES TO SYSTEMS OF LINEAR ODES

Author:

Zaytsev M.L.,Akkerman V.B.,

Abstract

The purpose of this work is to propose and demonstrate a way to explicitly transform polynomial ODE systems to linear ODE systems. With the help of an additional first integral, the one-dimensional Riccati equation is transformed to a linear system of three ODEs with variable coefficients. Solving the system, we can find a solution to the original Riccati equation in the general form or only to the Cauchy problem. The Riccati equation is one of the most interesting nonlinear first order differential equations. It is proved that there is no general solution of the Riccati equation in the form of quadratures; however, if at least one particular solution is known, then its general solution is also found. Thus, it is enough only to find a particular solution of the linear system of ODEs. The applied transformation method is a special case of the method described in our work [Zaytsev M. L., Akkerman V. B. (2020) On the identification of solutions to Riccati equation and the other polynomial systems of ODEs // preprint, Research Gate. DOI: 10.13140 / RG.2.2.26980.60807]. This method uses algebraic transformations and transition to new unknowns consisting of products of the original unknowns. The number of new unknowns becomes less than the number of equations. For the multidimensional Riccati equations, we do not present the corresponding linear system of ODEs because of the large number of linear equations obtained (more than 100). However, we present the first integral with which this can be done. In this paper, we also propose a method for finding the first integral, which can be used to reduce a search for the solution of any polynomial systems of ODEs to a search of solutions to linear systems of ODEs. In particular, if the coefficients in these equations are constant, then the solution is found explicitly.

Publisher

Tomsk State University

Subject

Mechanical Engineering,Mechanics of Materials,General Mathematics,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3