Magnesium silicates at high dynamic loading

Author:

Maevskiy Konstantin K., ,

Abstract

Research on the dynamic compression of geological materials is important for understanding composition and physical condition of the deep interior of the Earth and other planets. It also provides some data on the interaction processes related to the formation and evolution of planets. Magnesium silicates dominate in Earth's mantle and, thus, are expected to become the major phases in rocky exoplanets. In particular, enstatite Mg2[Si2O6] and forsterite Mg2SiO4 are essential constituents of Earth's mantles. Strong emphasis is put on the phase transition possibility for magnesium silicates under study. A remarkable fact is the dissociation of Mg2SiO4 into the following oxides: MgO and SiO2 (stishovite). The experiments have been carried out at a pressure value of 33 GPa, which corresponds to that in Earth's mantle at a depth of 1000 km. In this paper, the results of modeling the shock-wave loading of enstatite and forsterite as the mixtures of quartz SiO2 and periclase MgO are presented. The proposed model assumes that the components of the mixture under shock-wave loading are in thermodynamic equilibrium. The components of the material under study are considered in a phase transition region as a mixture of low- and high-pressure phases. The model is also valid for a polymorphic phase transition region. The calculations of magnesium silicates are performed with account for the polymorphic phase transition of quartz and periclase. The results are validated using the data obtained in dynamic experiments.

Publisher

Tomsk State University

Subject

Mechanical Engineering,Mechanics of Materials,General Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3