IMPACT OF CLIMATE CHANGE ON THE HYDRAULIC MODES OF OPERATION OF SURFACE RUNOFF DRAINAGE SYSTEMS

Author:

Ignatchik V. S., ,Ignatchik S. Y.,Kuznetsova N. V.,Fes’kova A. Y., , ,

Abstract

Introduction. Based on Resolution of the Government of the Russian Federation No. 782 “On water supply and wastewater disposal plans”, the volume of generated wastewater should be forecast for a period of at least 10 years. Along with this, it is also necessary to assess the hydraulic modes of operation of networks and collectors, specified earlier. However, the existing regulatory literature lacks data on the dynamics of calculated rain intensities and their prospective values. The analysis of the subject area showed that it is possible to determine the climatic parameters of an area, and thus establish the values for the characteristics of calculated rain, based on the data of long-term observations (from 20 years) with one self-recording rain gauge, or with a network of similar rain gauges, with a duration of observations of 5 years or more. A similar network of rain gauges is available in St. Petersburg. It makes it possible to assess the actual values of climatic parameters, but due to the lack of statistical data does not allow for assessing the dynamics of their changes. Therefore, the purpose of this article is to roughly estimate the dynamics of changes in climatic parameters in St. Petersburg and the degree of their impact on the hydraulic modes of operation of surface runoff drainage networks and collectors. Methods. In the course of the study, we analyzed the dynamics of changes in the total annual precipitation H and rain force in St. Petersburg and examined the influence of the dynamics of rain force changes on the operation of surface runoff drainage networks and collectors. Results. At the first stage of the study, we obtained the results of linear approximation of the H data, the calculated values of rain force changes Δ, and the results of linear approximation of the Δ data. The second stage of the study resulted in changes in the hydraulic modes of runoff input during the design period and in 50 years. Conclusion. We experimentally substantiated the possibility to determine the dynamics of rain force changes (at P = 0.33 and with acceptable accuracy) depending on the dynamics of changes in the total annual precipitation. For networks designed and laid 50 years ago, the actual rain force changes will be 9 %. As a result of climate change, water consumption in the calculation periods increased by about 26% with an increase in the total volume of discharged water by 9–10 %.

Publisher

Saint Petersburg State University of Architecture and Civil Engineering (SPSUACE)

Subject

Waste Management and Disposal,Water Science and Technology,Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wastewater Treatment from Railway Transport Facilities in the Arctic Zone of Russia;Lecture Notes in Networks and Systems;2024

2. Current status of water objects in Russia;E3S Web of Conferences;2023

3. New Technology of Collection, Drainage and Joint Treatment of Industrial Urban Runoff;International Scientific Siberian Transport Forum TransSiberia - 2021;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3