Improved SOLOv2 detection method for shield tunnel lining water leakages
Author:
Publisher
Tsinghua University Press
Reference37 articles.
1. Jia F.. 3D reconstruction and automatic leakage defect quantification of metro tunnel based on SfM-deep learning method. 2021, 7: 311-323.
2. Mo S.. Review on machine learning-based defect detection of shield tunnel lining. 2022, 66: 943-957.
3. C. Peng Y.. Three-dimensional coupled hydromechanical analysis of localized joint leakage in segmental tunnel linings. 2022, 130: 104726.
4. C. Li Y.. A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects. 2018, 33: 638-654.
5. J. Gong C.. Automatic detection method of tunnel lining multi-defects via an enhanced You Only Look Once network. 2022, 37: 762-780.
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. WLR-Net: An Improved YOLO-V7 With Edge Constraints and Attention Mechanism for Water Leakage Recognition in the Tunnel;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-08
2. Effect of groundwater decline on plant induced by tunnel excavation and calculation of ecological water level based on SPAC model;Journal of Intelligent Construction;2024-06
3. Intelligent identification of tunnel water leakage based on super-resolution reconstruction and triple attention;Measurement;2024-02
4. Intelligent recognition of voids behind tunnel linings using deep learning and percussion sound;Journal of Intelligent Construction;2023-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3