Culture models produced via biomanufacturing for neural tissue-like constructs based on primary neural and neural stem cells

Author:

Chen Wei1234,Gai Ke1234,Lin Feng123,Sun Wei1235,Song Yu123

Affiliation:

1. Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

2. Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China

3. “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing 100084, China

4. These authors contributed equally to this work.

5. Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA

Abstract

Neural tissue-like constructs have important application potential in both neural tissue regeneration and individual medical treatment due to the ideal bioenvironment they provide for the growth of primary and stem cells. The biomaterials used in three-dimensional (3D) biomanufacturing techniques play a critical role in bioenvironment fabrication. They help optimize the manufacturing techniques and the long-term environment that supports cell structure and nutrient transmission. This paper reviews the current progress being made in the biomaterials utilized in neural cell cultures for in vitro bioenvironment construction. The following four requirements for biomaterials are evaluated: biocompatibility, porosity, supportability, and permeability. This study also summarizes the recent culture models based on primary neural cells. Furthermore, the biomaterials used for neural stem cell constructs are discussed. This study’s results indicate that compared with traditional two-dimensional (2D) cultures (with minimal biomaterial requirements), modulus 3D cultures greatly benefit from optimized biomaterials for long-term culturing.

Publisher

Tsinghua University Press

Subject

Microbiology (medical),Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3