Comparison of cross-subject EEG emotion recognition algorithms in the BCI Controlled Robot Contest in World Robot Contest 2021

Author:

Tang Chao1,Li Yunhuan1,Chen Badong

Affiliation:

1. These authors contributed equally to this work.

Abstract

Electroencephalogram (EEG) data depict various emotional states and reflect brain activity. There has been increasing interest in EEG emotion recognition in brain–computer interface systems (BCIs). In the World Robot Contest (WRC), the BCI Controlled Robot Contest successfully staged an emotion recognition technology competition. Three types of emotions (happy, sad, and neutral) are modeled using EEG signals. In this study, 5 methods employed by different teams are compared. The results reveal that classical machine learning approaches and deep learning methods perform similarly in offline recognition, whereas deep learning methods perform better in online cross-subject decoding.

Publisher

Tsinghua University Press

Subject

Microbiology (medical),Immunology,Immunology and Allergy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GNN-based multi-source domain prototype representation for cross-subject EEG emotion recognition;Neurocomputing;2024-12

2. Understanding Learning from EEG Data: Combining Machine Learning and Feature Engineering Based on Hidden Markov Models and Mixed Models;Neuroinformatics;2024-09-10

3. EEG Emotion Recognition Based on Dynamic Graph Neural Networks;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

4. A Cascade xDAWN EEGNet Structure for Unified Visual-Evoked Related Potential Detection;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2024

5. Decoding Emotions Using Deep Learning Approach to EEG-Based Emotion Recognition;2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3