Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS

Author:

Ouali Alami Najwa123ORCID,Tang Linyun1,Wiesner Diana14,Commisso Barbara1,Bayer David15,Weishaupt Jochen1,Dupuis Luc6,Wong Phillip78,Baumann Bernd9,Wirth Thomas9,Boeckers Tobias M410,Yilmazer-Hanke Deniz3ORCID,Ludolph Albert14,Roselli Francesco14ORCID

Affiliation:

1. Department of Neurology, Ulm University, Ulm, Germany

2. International Graduate School in Molecular Medicine Ulm, Ulm, Germany

3. Department of Neurology, Clinical Neuroanatomy, Ulm University, Ulm, Germany

4. German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany

5. CEMMA Graduate School, Ulm University, Ulm, Germany

6. Inserm U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence; Université de Strasbourg, Faculté de Médecine, Strasbourg, France

7. Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

8. Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA

9. Institute of Physiological Chemistry, Ulm University, Ulm, Germany

10. Department of Anatomy and Cell Biology, Ulm University, Ulm, Germany

Abstract

Blood–spinal cord barrier (BSCB) disruption is thought to contribute to motoneuron (MN) loss in amyotrophic lateral sclerosis (ALS). It is currently unclear whether impairment of the BSCB is the cause or consequence of MN dysfunction and whether its restoration may be directly beneficial. We revealed that SOD1G93A, FUSΔNLS, TDP43G298S, and Tbk1+/− ALS mouse models commonly shared alterations in the BSCB, unrelated to motoneuron loss. We exploit PSAM/PSEM chemogenetics in SOD1G93A mice to demonstrate that the BSCB is rescued by increased MN firing, whereas inactivation worsens it. Moreover, we use DREADD chemogenetics, alone or in multiplexed form, to show that activation of Gi signaling in astrocytes restores BSCB integrity, independently of MN firing, with no effect on MN disease markers and dissociating them from BSCB disruption. We show that astrocytic levels of the BSCB stabilizers Wnt7a and Wnt5a are decreased in SOD1G93A mice and strongly enhanced by Gi signaling, although further decreased by MN inactivation. Thus, we demonstrate that BSCB impairment follows MN dysfunction in ALS pathogenesis but can be reversed by Gi-induced expression of astrocytic Wnt5a/7a.

Funder

Synapsis Foundation, Thierry Latran Foundation, Radala Foundation

Deutsche Forschungsgemeinschaft

Cellular and Molecular Mechanisms in Aging (CEMMA) Research Training Group

BMBF

Baustein grant of the Ulm University Medical Faculty

China Scholarship Council

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3