Re-annotation of eight Drosophila genomes

Author:

Yang Haiwang1ORCID,Jaime Maria1,Polihronakis Maxi2,Kanegawa Kelvin3,Markow Therese42,Kaneshiro Kenneth3,Oliver Brian1

Affiliation:

1. Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA

2. Drosophila Species Stock Center, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA

3. Hawaiian Drosophila Research Stock Center, Pacific Biosciences Research Center, University of Hawaiʻi at Manoa, Honolulu, HI, USA

4. National Laboratory of Genomics for Biodiversity (LANGEBIO), Irapuato, Guanajuato, Mexico

Abstract

The sequenced genomes of the Drosophila phylogeny are a central resource for comparative work supporting the understanding of the Drosophila melanogaster non-mammalian model system. These have also facilitated evolutionary studies on the selected and random differences that distinguish the thousands of extant species of Drosophila. However, full utility has been hampered by uneven genome annotation. We have generated a large expression profile dataset for nine species of Drosophila and trained a transcriptome assembly approach on D. melanogaster that best matched the extensively curated annotation. We then applied this to the other species to add more than 10000 transcript models per species. We also developed new orthologs to facilitate cross-species comparisons. We validated the new annotation of the distantly related Drosophila grimshawi with an extensive collection of newly sequenced cDNAs. This re-annotation will facilitate understanding both the core commonalities and the species differences in this important group of model organisms, and suggests a strategy for annotating the many forthcoming genomes covering the tree of life.

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3