Harnessing reaction-based probes to preferentially target pancreatic β-cells and β-like cells

Author:

Kahraman Sevim1ORCID,Manna Debasish234,Dirice Ercument1ORCID,Maji Basudeb234,Small Jonnell25,Wagner Bridget K2ORCID,Choudhary Amit2345ORCID,Kulkarni Rohit N1ORCID

Affiliation:

1. Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA

2. Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA

3. Department of Medicine, Harvard Medical School, Boston, MA, USA

4. Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA, USA

5. Chemical Biology Program, Harvard University, Cambridge, MA, USA

Abstract

Highly sensitive approaches to target insulin-expressing cells would allow more effective imaging, sorting, and analysis of pancreatic β-cells. Here, we introduce the use of a reaction-based probe, diacetylated Zinpyr1 (DA-ZP1), to image pancreatic β-cells and β-like cells derived from human pluripotent stem cells. We harness the high intracellular zinc concentration of β-cells to induce a fluorescence signal in cells after administration of DA-ZP1. Given its specificity and rapid uptake by cells, we used DA-ZP1 to purify live stem cell-derived β-like cells as confirmed by immunostaining analysis. We tested the ability of DA-ZP1 to image transplanted human islet grafts and endogenous mouse pancreatic islets in vivo after its systemic administration into mice. Thus, DA-ZP1 enables purification of insulin-secreting β-like cells for downstream applications, such as functional studies, gene-expression, and cell–cell interaction analyses and can be used to label engrafted human islets and endogenous mouse islets in vivo.

Funder

NIH

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3