Affiliation:
1. Department of Biophysics, Graduate School of Science, Kyoto University
2. Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
Abstract
The unfolded protein response is triggered in vertebrates by ubiquitously expressed IRE1α/β (although IRE1β is gut-specific in mice), PERK, and ATF6α/β, transmembrane-type sensor proteins in the ER, to cope with ER stress, the accumulation of unfolded and misfolded proteins in the ER. Here, we burdened medaka fish, a vertebrate model organism, with ER stress persistently from fertilization by knocking out theAXERgene encoding an ATP/ADP exchanger in the ER membrane, leading to decreased ATP concentration–mediated impairment of the activity of Hsp70- and Hsp90-type molecular chaperones in the ER lumen. ER stress and apoptosis were evoked from 4 and 6 dpf, respectively, leading to the death of allAXER-KO medaka by 12 dpf because of heart failure (medaka hatch at 7 dpf). Importantly, constitutive activation of IRE1α signaling—but not ATF6α signaling—rescued this heart failure and allowedAXER-KO medaka to survive 3 d longer, likely because of XBP1-mediated transcriptional induction of ER-associated degradation components. Thus, activation of a specific pathway of the unfolded protein response can cure defects in a particular organ.
Publisher
Life Science Alliance, LLC
Subject
Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology