TrkA-mediated endocytosis of p75-CTF prevents cholinergic neuron death upon γ-secretase inhibition

Author:

Franco María Luisa1,García-Carpio Irmina1,Comaposada-Baró Raquel1ORCID,Escribano-Saiz Juan J1,Chávez-Gutiérrez Lucía2,Vilar Marçal1ORCID

Affiliation:

1. Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain

2. Vlaams Instituut voor Biotechnologie Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease, Leuven, Belgium

Abstract

γ-secretase inhibitors (GSI) were developed to reduce the generation of Aβ peptide to find new Alzheimer’s disease treatments. Clinical trials on Alzheimer’s disease patients, however, showed several side effects that worsened the cognitive symptoms of the treated patients. The observed side effects were partially attributed to Notch signaling. However, the effect on other γ-secretase substrates, such as the p75 neurotrophin receptor (p75NTR) has not been studied in detail. p75NTR is highly expressed in the basal forebrain cholinergic neurons (BFCNs) during all life. Here, we show that GSI treatment induces the oligomerization of p75CTF leading to the cell death of BFCNs, and that this event is dependent on TrkA activity. The oligomerization of p75CTF requires an intact cholesterol recognition sequence (CRAC) and the constitutive binding of TRAF6, which activates the JNK and p38 pathways. Remarkably, TrkA rescues from cell death by a mechanism involving the endocytosis of p75CTF. These results suggest that the inhibition of γ-secretase activity in aged patients, where the expression of TrkA in the BFCNs is already reduced, could accelerate cholinergic dysfunction and promote neurodegeneration.

Funder

Spanish Minister of Economy and Competitiveness grant

Generalitat Valenciana

FPI Pre-doctoral fellowship

Spanish Minister of Economy and Competitiveness

Stichting Alzheimer Onderzoek

FWO research project

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3