Loss of cell–cell adhesion triggers cell migration through Rac1-dependent ROS generation

Author:

Chen Yu-Hsuan12ORCID,Hsu Jinn-Yuan12,Chu Ching-Tung12ORCID,Chang Yao-Wen3,Fan Jia-Rong12,Yang Muh-Hwa234,Chen Hong-Chen12ORCID

Affiliation:

1. Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan

2. Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan

3. Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan

4. Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan

Abstract

Epithelial cells usually trigger their “migratory machinery” upon loss of adhesion to their neighbors. This default is important for both physiological (e.g., wound healing) and pathological (e.g., tumor metastasis) processes. However, the underlying mechanism for such a default remains unclear. In this study, we used the human head and neck squamous cell carcinoma (HNSCC) SAS cells as a model and found that loss of cell–cell adhesion induced reactive oxygen species (ROS) generation and vimentin expression, both of which were required for SAS cell migration upon loss of cell–cell adhesion. We demonstrated that Tiam1-mediated Rac1 activation was responsible for the ROS generation through NADPH-dependent oxidases. Moreover, the ROS–Src–STAT3 signaling pathway that led to vimentin expression was important for SAS cell migration. The activation of ROS, Src, and STAT3 was also detected in tumor biopsies from HNSCC patients. Notably, activated STAT3 was more abundant at the tumor invasive front and correlated with metastatic progression of HNSCC. Together, our results unveil a mechanism of how cells trigger their migration upon loss of cell–cell adhesion and highlight an important role of the ROS–Src–STAT3 signaling pathway in the progression of HNSCC.

Funder

National Science and Technology Council

Cancer Progression Research Center, National Yang Ming Chiao Tung University

Ministry of Education

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3