Affiliation:
1. Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal
2. Integrated Program in Neuroscience, McGill University
3. Department of Medicine, Université de Montréal
4. Division of Experimental Medicine, McGill University
Abstract
Amyloid-β oligomers (AβOs), toxic peptide aggregates found in Alzheimer’s disease, cause synapse pathology. AβOs interact with neurexins (NRXs), key synaptic organizers, and this interaction dampens normal trafficking and function of NRXs. Axonal trafficking of NRX is in part regulated by its interaction with SorCS1, a protein sorting receptor, but the impact of SorCS1 regulation of NRXs in Aβ pathology was previously unstudied. Here, we show competition between the SorCS1 ectodomain and AβOs for β-NRX binding and rescue effects of the SorCS1b isoform on AβO-induced synaptic pathology. Like AβOs, the SorCS1 ectodomain binds to NRX1β through the histidine-rich domain of NRX1β, and the SorCS1 ectodomain and AβOs compete for NRX1β binding. In cultured hippocampal neurons, SorCS1b colocalizes with NRX1β on the axon surface, and axonal expression of SorCS1b rescues AβO-induced impairment of NRX-mediated presynaptic organization and presynaptic vesicle recycling and AβO-induced structural defects in excitatory synapses. Thus, our data suggest a role for SorCS1 in the rescue of AβO-induced NRX dysfunction and synaptic pathology, providing the basis for a novel potential therapeutic strategy for Alzheimer’s disease.
Funder
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
FRQ | Fonds de Recherche du Québec-Société et Culture
Institut de Recherche Clinique De Montréal
McGill University
Société Alzheimer | Alzheimer Society Research Program
FRQ | Fonds de Recherche du Québec - Santé
Gouvernement du Canada | Canadian Institutes of Health Research
Publisher
Life Science Alliance, LLC
Subject
Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献