Cell-free chromatin immunoprecipitation to detect molecular pathways in heart transplantation

Author:

Jang Moon Kyoo1ORCID,Markowitz Tovah E2,Andargie Temesgen E13ORCID,Apalara Zainab1,Kuhn Skyler2,Agbor-Enoh Sean14ORCID

Affiliation:

1. Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH

2. NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, National Institute of Allergy and Infectious Diseases, NIH

3. Department of Biology, Howard University, Washington, DC, USA

4. Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA

Abstract

Existing monitoring approaches in heart transplantation lack the sensitivity to provide deep molecular assessments to guide management, or require endomyocardial biopsy, an invasive and blind procedure that lacks the precision to reliably obtain biopsy samples from diseased sites. This study examined plasma cell-free DNA chromatin immunoprecipitation sequencing (cfChIP-seq) as a noninvasive proxy to define molecular gene sets and sources of tissue injury in heart transplant patients. In healthy controls and in heart transplant patients, cfChIP-seq reliably detected housekeeping genes. cfChIP-seq identified differential gene signals of relevant immune and nonimmune molecular pathways that were predominantly down-regulated in immunosuppressed heart transplant patients compared with healthy controls. cfChIP-seq also identified cell-free DNA tissue sources. Compared with healthy controls, heart transplant patients demonstrated greater cell-free DNA from tissue types associated with heart transplant complications, including the heart, hematopoietic cells, lungs, liver, and vascular endothelium. cfChIP-seq may therefore be a reliable approach to profile dynamic assessments of molecular pathways and sources of tissue injury in heart transplant patients.

Funder

NHLBI Division of Intramural Research

Lasker Clinical Research Fellowship

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3