Suppression of isoprenylcysteine carboxylmethyltransferase compromises DNA damage repair

Author:

Tang Jingyi1,Casey Patrick J12ORCID,Wang Mei13ORCID

Affiliation:

1. Duke-NUS Medical School, Program in Cancer and Stem Cell, Singapore, Singapore

2. Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA

3. Department of Biochemistry, National University of Singapore, Singapore 117596

Abstract

DNA damage is a double-edged sword for cancer cells. On the one hand, DNA damage–induced genomic instability contributes to cancer development; on the other hand, accumulating damage compromises proliferation and survival of cancer cells. Understanding the key regulators of DNA damage repair machinery would benefit the development of cancer therapies that induce DNA damage and apoptosis. In this study, we found that isoprenylcysteine carboxylmethyltransferase (ICMT), a posttranslational modification enzyme, plays an important role in DNA damage repair. We found that ICMT suppression consistently reduces the activity of MAPK signaling, which compromises the expression of key proteins in the DNA damage repair machinery. The ensuing accumulation of DNA damage leads to cell cycle arrest and apoptosis in multiple breast cancer cells. Interestingly, these observations are more pronounced in cells grown under anchorage-independent conditions or grown in vivo. Consistent with the negative impact on DNA repair, ICMT inhibition transforms the cancer cells into a “BRCA-like” state, hence sensitizing cancer cells to the treatment of PARP inhibitor and other DNA damage–inducing agents.

Funder

Ministry of Education of Singapore and National Medical Research Council Individual

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3