Genetic reprogramming with stem cells regenerates glomerular epithelial podocytes in Alport syndrome

Author:

LeBleu Valerie S1234ORCID,Kanasaki Keizo2,Lovisa Sara1ORCID,Alge Joseph L14,Kim Jiha1,Chen Yang1,Teng Yingqi2,Gerami-Naini Behzad2,Sugimoto Hikaru12,Kato Noritoshi2ORCID,Revuelta Ignacio2ORCID,Grau Nicole56,Sleeman Jonathan P57ORCID,Taduri Gangadhar2,Kizu Akane2,Rafii Shahin8,Hochedlinger Konrad910,Quaggin Susan E11,Kalluri Raghu12101213ORCID

Affiliation:

1. Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

2. Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA

3. Northwestern University Feinberg School of Medicine and Kellogg School of Management, Chicago, IL, USA

4. Department of Medicine, Baylor College of Medicine

5. Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany

6. Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany

7. Karlsruhe Institute of Technology (IBCS-BIP), Karlsruhe, Germany

8. Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY, USA

9. Massachusetts General Hospital, Boston, MA, USA

10. Harvard Stem Cell Institute, Boston, MA, USA

11. Northwestern University Feinberg School of Medicine & Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA

12. Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA

13. Department of Bioengineering, Rice University, Houston, TX, USA

Abstract

Glomerular filtration relies on the type IV collagen (ColIV) network of the glomerular basement membrane, namely, in the triple helical molecules containing the α3, α4, and α5 chains of ColIV. Loss of function mutations in the genes encoding these chains (Col4a3,Col4a4, andCol4a5) is associated with the loss of renal function observed in Alport syndrome (AS). Precise understanding of the cellular basis for the patho-mechanism remains unknown and a specific therapy for this disease does not currently exist. Here, we generated a novel allele for the conditional deletion ofCol4a3in different glomerular cell types in mice. We found that podocytes specifically generate α3 chains in the developing glomerular basement membrane, and that its absence is sufficient to impair glomerular filtration as seen in AS. Next, we show that horizontal gene transfer, enhanced by TGFβ1 and using allogenic bone marrow–derived mesenchymal stem cells and induced pluripotent stem cells, rescuesCol4a3expression and revive kidney function in Col4a3-deficient AS mice. Our proof-of-concept study supports that horizontal gene transfer such as cell fusion enables cell-based therapy in Alport syndrome.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

NIH Gastroenterology Training grant

National Kidney Foundation

NIH Cardiovascular Medicine Training grant

Spanish society of nephrology

Publisher

Life Science Alliance, LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3