Plasma proteome dynamics of COVID-19 severity learnt by a graph convolutional network of multi-scale topology

Author:

Gauthier Samy1,Tran-Dinh Alexy23,Morilla Ian14ORCID

Affiliation:

1. Université Sorbonne Paris Nord

2. Département d’anesthésie-Réanimation, INSERM, Université de Paris, AP-HP, Hôpital Bichat Claude Bernard, Paris, France

3. Université de Paris, LVTS, Inserm U1148, Paris, France

4. Department of Genetics, University of Malaga

Abstract

Efforts to understand the molecular mechanisms of COVID-19 have led to the identification of ACE2 as the main receptor for the SARS-CoV-2 spike protein on cell surfaces. However, there are still important questions about the role of other proteins in disease progression. To address these questions, we modelled the plasma proteome of 384 COVID-19 patients using protein level measurements taken at three different times and incorporating comprehensive clinical evaluation data collected 28 d after hospitalisation. Our analysis can accurately assess the severity of the illness using a metric based on WHO scores. By using topological vectorisation, we identified proteins that vary most in expression based on disease severity, and then utilised these findings to construct a graph convolutional network. This dynamic model allows us to learn the molecular interactions between these proteins, providing a tool to determine the severity of a COVID-19 infection at an early stage and identify potential pharmacological treatments by studying the dynamic interactions between the most relevant proteins.

Funder

Agence Nationale de la Recherche

DHU FIRE

Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3