MicroRNAs in tear fluids predict underlying molecular changes associated with Alzheimer’s disease

Author:

Wijesinghe Printha1ORCID,Xi Jeanne1,Cui Jing1,Campbell Matthew1,Pham Wellington23,Matsubara Joanne A14ORCID

Affiliation:

1. Department of Ophthalmology & Visual Sciences, Faculty of Medicine, The University of British Columbia, Eye Care Centre, Vancouver, Canada

2. Department of Radiology and Radiological Sciences, Vanderbilt University Medical Centre, Nashville, TN, USA

3. Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA

4. Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada

Abstract

Extracellular circulating microRNAs (miRNAs) have been discussed as potential biomarkers for Alzheimer’s disease (AD) diagnosis. As the retina is a part of the CNS, we hypothesize that miRNAs expression levels in the brain, particularly neocortex–hippocampus, eye tissues, and tear fluids are similar at different stages of AD progression. Ten miRNA candidates were systematically investigated in transgenic APP-PS1 mice, noncarrier siblings, and C57BL/6J wild-type controls at young and old ages. Relative expression levels of tested miRNAs revealed a similar pattern in both APP-PS1 mice and noncarrier siblings when compared with age- and sex-matched wild-type controls. However, the differences seen in expression levels between APP-PS1 mice and noncarrier siblings could possibly have resulted from underlying molecular etiology of AD. Importantly, miRNAs associated with amyloid beta (Aβ) production (-101a, -15a, and -342) and proinflammation (-125b, -146a, and -34a) showed significant up-regulations in the tear fluids with disease progression, as tracked by cortical Aβ load and reactive astrogliosis. Overall, for the first time, the translational potential of up-regulated tear fluid miRNAs associated with AD pathogenesis was comprehensively demonstrated.

Funder

Canadian Institute of Health Research

National Sciences and Engineering Research Council of Canada

National Institute of Health-NIA

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3