Реализация и производительность алгоритмов волновой томографии на вычислительных платформах SIMD CPU и GPU

Author:

Goncharsky A.V.ORCID,Romanov S.Y.ORCID,Seryozhnikov S.Y.ORCID

Abstract

This paper is concerned with implementation of wave tomography algorithms on modern SIMD CPU and GPU computing platforms. The field of wave tomography, which is currently under development, requires powerful computing resources. Main applications of wave tomography are medical imaging, nondestructive testing, seismic studies. Practical applications depend on computing hardware. Tomographic image reconstruction via wave tomography technique involves solving coefficient inverse problems for the wave equation. Such problems can be solved using iterative gradient-based methods, which rely on repeated numerical simulation of wave propagation process. In this study, finite-difference time-domain (FDTD) method is employed for wave simulation. This paper discusses software implementation of the algorithms and compares the performance of various computing devices: multi-core Intel and ARM-based CPUs, NVidia graphics processors. В данной статье рассматривается реализация алгоритмов волновой томографии на современных вычислительных платформах SIMD CPU и GPU. Область волновой томографии, которая в настоящее время находится в стадии разработки, требует мощных вычислительных ресурсов. Основные области применения волновой томографии - это медицинская визуализация, неразрушающий контроль, сейсмические исследования. Практические приложения зависят от вычислительного оборудования. Восстановление томографического изображения методом волновой томографии включает решение коэффициентов обратной задачи для волнового уравнения. Такие проблемы могут быть решены с помощью итерационных градиентных методов, основанных на многократном численном моделировании процесса распространения волн. В этом исследовании для моделирования волн используется метод конечных разностей во временной области (FDTD). В статье обсуждается программная реализация алгоритмов и сравнивается производительность различных вычислительных устройств: многоядерных процессоров Intel и ARM, графических процессоров NVidia.

Publisher

Research Computing Center Lomonosov Moscow State University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometric Bases of Parallel Computing in Computer Modeling and Computer-Aided Design Systems;Proceedings of the 32nd International Conference on Computer Graphics and Vision;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3