Performance improvement of PV systems during dynamic partial shading conditions using optimization algorithms

Author:

Sonam Soma Keerthi,R. Balamurugan,N. KaruppiahORCID

Abstract

PV power plants encounter varying levels of irradiance, temperature fluctuations, and partial shading because of the differences in sunlight conditions. Partial shading can cause an increase in the power loss, leading to a reduction in efficiency. Maximum Power Point Tracking (MPPT) is of utmost importance in the functioning of photovoltaic (PV) systems for electricity generation because it is indispensable for maximizing power extraction from PV modules, thereby increasing the overall power output. In situations where partial shading is present, the utilization of MPPT algorithms to achieve maximum power output becomes complex because of the existence of multiple distinct peak power points, each having a unique local optimum. To overcome this issue, a method is proposed that uses Darts Game Optimization (DGO), a game-based optimization process, to efficiently determine and extract the maximum power from various local optimal peaks. A population-based optimization method known as the Darts Game Optimization algorithm exists. In this approach, the optimization process begins by creating a population of random players. Then, the algorithm iteratively updates and improves the population to search for the best player or solution. In this study, the DGO algorithm was applied to the MPPT process for voltage optimization in the PV procedure. The DC-DC converter is utilized to capture the maximum available power, and the findings demonstrate that the DGO algorithm efficiently identifies the global maximum, resulting in accelerated convergence, reduced settling time, and minimized power oscillation. Through simulations, the feasibility and effectiveness of the DGO centered MPPT approach was confirmed and compared with MPPT algorithms relying on perturb and observe (P&O) and Particle Swarm Optimization (PSO). The simulation results offer compelling evidence that the DGO algorithm, as proposed in this study, proficiently traces the global maximum, thereby substantiating its practicality and efficiency.

Publisher

Universidad Tecnologica de Bolivar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3