HyTra: Hyperclass Transformer for WiFi Fingerprinting-based Indoor Localization

Author:

Nasir MuneebORCID,Esguerra KiaraORCID,Faye IbrahimaORCID,Tang Tong Boon,Yahya MazlainiORCID,Tumian AfidalinaORCID,Ho Eric Tatt WeiORCID

Abstract

The emerging demand for a variety of novel Location-based Services (LBS) by consumers and industrial users is driven by the rapid and extensive proliferation of mobile smart devices. Sensors embedded in smart devices or machines provide wireless connectivity and Global Positioning System (GPS) capability, and are co-utilized to acquire location-linked data which are algorithmically transformed into reliable and accurate location estimates. GPS is a mature and reliable technology for outdoor localization but indoor localization in a complex multi-storey building environment remains challenging due to fluctuations in wireless signal strength arising from multipath fading. Location-linked data from wireless access points (WAPs) such as received signal strength (RSS) are acquired as numerical sequences. By conceptualizing a fixed order sequence of WAP measurements as a sentence where the RSS from each WAP are words, we may leverage on recent advances in artificial intelligence for natural language processing (NLP) to enhance localization accuracy and improve robustness against signal fluctuations. We propose the hyper-class Transformer (HyTra), an encoder-only Transformer neural network which learns the relative positions of wireless access points (WAPs) through multiple learnable embeddings. We propose a second network, HyTra-HF, which improves upon HyTra by applying a hierarchical relationship between location classes. We test our proposed networks on public and private datasets varying in sizes. HyTra-HF outperforms existing deep learning solutions by obtaining 96.7\% accuracy for the floor classification task on the UJIIndoorloc dataset. HyTra-HF is amenable to deep model compression and achieves accuracy of 95.95\% with over ten-fold reduction in model size using Sparsity Aware Orthogonal (SAO) initialization and has the best-in-class accuracy for the sparse model.

Publisher

Universidad Tecnologica de Bolivar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3