Performance Validation of PM Assisted SynRM and PMSM with Optimized Design for EV Application

Author:

Jani SwapnilORCID,Jamnani JitendraORCID

Abstract

This paper presents the comparison of Permanent Magnet-Assisted Synchronous Reluctance Motor (PMASynRM) and Permanent Magnet Synchronous Motor (PMSM) for the same design parameters and the evaluation of various performance parameters based on the Finite Element (FE) Method. FE Analysis is conducted after selecting the optimized design for PMASynRM and PMSM using an FE tool, with loading conditions to determine various performance parameters. This is achieved by maintaining the same motor dimensions and stator parameters while altering the rotor geometry for both motors. The final simulation results are discussed, and other performance parameters are recorded for comparison purposes. A PMASynRM is introduced, in which the problems of Synchronous Reluctance Motor (SynRM) can be eliminated with a permanent magnet in the rotor flux barrier. Due to higher flux barriers in PMASynRM, the reluctance torque is higher than in PMSM. If the magnet is placed very near to the air gap in PMSM, higher magnet torque is achieved, but due to the high reluctance torque in PMASynRM, the electromagnetic torque of PMASynRM is higher compared to PMSM. The research proves that the proposed design of PMASynRM is the best choice for Electric Vehicle (EV) applications. For PMASynRM, the shape of the flux barrier is not possible to change due to the design limitation of the FE software tool. Further analysis can be conducted by changing the shapes of the flux barriers to propose the most effective barriers. Basic theory and FE analysis of conventional PMSM and SynRM are reported in the literature. An optimal design is proposed through comparative analysis for EV applications to find out the best candidate for an EV motor.

Publisher

Universidad Tecnologica de Bolivar

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3