Morpho-physiological characterization of second generation colchiploids in sweet orange (<i>Citrus sinensis </i>(L.) Osbeck) cv. Mosambi

Author:

Kiran K N,Singh AORCID,Singh S K,Awasthi O P,Yadav P,Sandeep K B

Abstract

Induction of tetraploidy in citrus is commonly meant for the development of triploid seedless cultivars as well as resistance against abiotic and biotic stresses. Three-year-old, 20 second-generation colchicine treated (0.05, 0.10, 0.15 and 0.20%) plants (colchiploids), established from the putative tetraploid branches of the first generation colchiploids of sweet orange (Citrus sinensis (L.) Osbeck) cv. Mosambi vegetatively propagated on Jatti khatti rootstock, along with their wild (parent) type, were characterized based on morphological and physiological traits. Plant height and canopy volume were reduced, but stem girth, nodes per shoot and bark: wood increased in the majority of the second-generation colchiploids related to the wild type. Colchiploids also possessed improved flower characteristics in terms of length and width. The stomatal dimensions increased, but stomatal concentration reduced in all the colchiploids. Colchicine treatment also caused significant variations in leaf gas exchange parameters, including photosynthetic rate, intercellular CO2 concentration, leaf net transpiration rates, stomatal conductance, and intrinsic water use efficiency in colchiploids affecting their photosynthetic activities. The solid tetraploids identified on the basis of morpho-physiological characterization can be used in future breeding programmes for the development of triploid seedless citrus cultivars or can be used for the mitigation of biotic and abiotic stresses.

Publisher

Society for Promotion of Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3