Author:
Tran T T,Nguyen H P,Tran T T H,Le Thi Thuy Tien
Abstract
Molybdenum (Mo) is an essential trace element that plays a critical role in various physiological processes of plants. Drought stress poses a significant threat to plant growth, making it imperative to study the effects of Mo in mitigating its impact on Brassica parachinensis L. and Brassica integrifolia L. This study aims to investigate the influence of molybdenum on the growth and nitrogen metabolism of Brassica species under drought-stress conditions. The study delves into the physiological and biochemical responses of these plants to Mo supplementation to comprehend the mechanisms by which Mo enhances drought tolerance and nitrogen assimilation. The results revealed that Mo supplementation (150 g ha-1) significantly improves the growth and nitrogen metabolism of Brassica species under drought-stress conditions. In particular, the application of Mo under drought stress leads to a notable increase in yield, as indicated by the improvement in productivity from 3.41 to 4.25 (kg m-2) and 3.89 to 4.97 (kg m-2) in Brassica parachinensis and Brassica integrifolia, respectively. Furthermore, Mo supplementation enhances chlorophyll levels, thereby promoting efficient photosynthesis. Additionally, it positively affects the accumulation of soluble sugars, starch, and proteins, indicating improved nutrient assimilation and utilization in the plants. These findings suggest that Mo supplementation plays a crucial role in enhancing drought tolerance and nitrogen assimilation in Brassica species. The study highlights the potential of Mo as a valuable tool for improving crop productivity and resilience under drought-stress conditions
Publisher
Society for Promotion of Horticulture