Effect of Operating Parameters on Agricultural Biomass Mixture Pyrolysis Process in a Batch Reactor

Author:

Miljkovic Biljana

Abstract

Many phenomena affect devolatilization of biomass particles, including mass and heat transfer, chemical reactions and physical transformation. Mathematical models that are capable to describe pyrolysis phenomena can greatly assist the large-scale development and optimization of pyrolysis processes, but to be implemented into large-scale simulation the models need to be simplified at a certain degree. In the present study, an existing mathematical model is used to describe the pyrolysis of a single particle of biomass. It couples the heat transfer equations with the chemical kinetics equations. The common Euler explicit method is used for solving the heat transfer equation and the two-step pyrolysis kinetics equations. The model equation is solved for a sphere particle with a radius of 0.001 m and temperature ranging from 300 to 923 K. An original numerical model for the pyrolysis of agricultural biomass mixture is proposed and relevant equations solved using original program realized in MATLAB. Simplified particle model was validated with the experimental data in a non-isothermal pyrolysis reactor. The sample was heated in the temperature range of 300–923 K at average heating rates of 21, 30 and 54 K/min. The model results showed reasonable agreement with experiments. The difference (between the experimental and model results) is slightly more prominent with decreasing heating rate (21 and 30 K/min), but model results are in much better agreement with the experimental date for higher heating rate (54 K/min). It is demonstrated that a constitutive equation can be used to express devolatilization rate for higher heating rates.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3