Uncertainty Quantification of the Traffic Assignment Model
-
Published:2020-09-16
Issue:
Volume:
Page:
-
ISSN:1587-3773
-
Container-title:Periodica Polytechnica Civil Engineering
-
language:
-
Short-container-title:Period. Polytech. Civil Eng.
Author:
Seger Mundher,Kisgyörgy Lajos
Abstract
Forecasting of traffic flow in the traffic assignment model suffered to a wide range of uncertainties arising from different sources and exacerbating through sequential-stages of the travel demand model. Uncertainty quantification can provide insights into the level of confidence on the traffic assignment model outputs, and also identify the uncertainties of the input Origin-Destination matrix for enhancing the forecasting robustness of the travel demand model. In this paper, a systematic framework is proposed to quantify the uncertainties that lie in the Origin-Destination input matrix. Hence, this study mainly focuses on predicting the posterior distributions of uncertainty Origin-Destination pairs and correcting the biases of Origin-Destination pairs by using the inverse uncertainty quantification formulated through Least Squares Adjustment method. The posterior distributions are further used in the forward uncertainty quantification to quantify the forecast uncertainty of the traffic flow on a transport network. The results show the effectiveness of implementing the inverse uncertainty quantification framework in the traffic assignment model. And demonstrate the necessity of including uncertainty quantification of the input Origin-Destination matrix in future work of travel demand modelling.
Publisher
Periodica Polytechnica Budapest University of Technology and Economics
Subject
Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献