Investigating the Effect of Using Waste Ultra-high-molecular-weight Polyethylene on the Fatigue Life of Asphalt Mixture

Author:

Hamedi Gholam Hossein,Hadizadeh Pirbasti Mohammad,Ranjbar Pirbasti Zahra

Abstract

One of the effective parameters in the occurrence of fatigue cracking distress is the asphalt binder properties used, which must be controlled by appropriate asphalt binder or additives. In this study, the effect of using Ultra-High-Molecular-Weight Polyethylene (UHMWPE) was investigated on the fatigue cracking potential of asphalt mixtures. Two types of aggregates, asphalt binder performance grade (PG) 64-16, and UHMWPE additive in two percent of the asphalt binder were used in this study, which were tested at two temperatures and five different stress levels. Marshall mix design and indirect tensile fatigue test (ITFT) were used to determine the optimum content of the asphalt binder and the fatigue life of asphalt mixtures, respectively. The results of this study indicated that the application of polymer additives increased the fatigue life of the asphalt mixtures. The fatigue life of specimens made with granite aggregates was longer than those made with limestone aggregates, and the increased life due to the use of UHMWPE was longer in samples made with granite aggregates. As expected, increasing in temperature and stress levels reduced the fatigue life of the asphalt mixtures. This decrease was much lower in samples made of asphalt binder modified with polymeric materials than in control samples.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3