Strengthening of vulnerable RC moment resisting frames using direct internal connection of X-steel bracing

Author:

Sadeghinezhad Siavash,Kheyroddin Ali,Mortezaei Alireza

Abstract

Non-ductile reinforced concrete frames are commonly found in older buildings in many parts of the world. These structures designed for gravity loads, have limited lateral strength and ductility, are prone to excessive one-way lateral movement and soft-story mechanism. This paper focuses on the retrofit of an existing reinforced concrete frame, using steel X-braces by direct internal connection method. The main purpose is the analytical study of general behavior and response of large scale vulnerable frames. An experimental study was used to validate the numerical modeling performed in ABAQUS. Next the base samples were retrofitted with X-braces and four proposed direct internal connection methods. Furthermore, in a separate parametric studies, the effect of frame type, bracing cross-section dimensions and gusset plate shape were investigated. The results indicated that the stiffness, bearing capacity and absorbed energy of the reinforced concrete frame by using steel X-braces increases up to 4, 2.3 and 1.5 times, respectively. Moreover, bracing acts like the first defense system against lateral loads, such as structural fuse with its yield, increases the amount of energy dissipation. It also removes the plastic hinges by reducing the ultimate displacement and stress of lateral load in the panel zone.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3