An Experimental and Numerical Analysis on the Dynamical Behavior of a Safety Valve in the Case of Two-phase Non-flashing Flow

Author:

Burhani Mhd Ghaith,Hős Csaba

Abstract

Pressure Relief Valves (PRVs) are key elements of any hydraulic system in the process industry, especially in chemical plants or hydraulic power transmission systems. Their task is to maintain the system pressure beneath a prescribed maximum pressure and vent the excessive fluid in an emergency scenario. This paper addresses the static and dynamic behavior of a Direct Spring-Operated PRV of conical shape in the presence of two-phase non-flashing flow, that is, water-air mixture. First, experimental results on the force and discharge characteristics of such a valve in a wide range of the air-to-water mass fraction are presented. Our test facility includes a custom-designed PRV with 42.5 mm inlet pipe diameter, an inlet pressure up to 6.6 bar(g) and a maximum lift of 10 mm. Additionally, the empirical results on the static characteristics, notably fluid force on the valve disc and discharge coefficients are reported as a function of the liquid mass fraction and valve lift. In the second part of the paper, we present the development of a Matlab-based simulation tool that is capable of predicting the dynamics and stability of such a valve in the case of two-phase, non-flashing, frozen-mixture flow. Moreover, the effect of system parameters, such as spring stiffness and reservoir capacity are recorded. Finally, we also present results on the stability of the opening and closing the multi-phase flow influence on the stability of the blowdown process.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3