Design of Discrete Wavelet by Using Transient Model for Exact Measurement of Manufacturing Faults of Tapered Roller Bearings

Author:

Deák Krisztián

Abstract

This paper considers a comparison of six wavelets for bearing fault diagnosis. Five wavelets Symlet_05, Symlet_08, Daubechies_04, Daubechies_06, Daubechies_08 are typical ones which are used for fault diagnosis due to several researches. The purpose is to design a new discrete wavelet which has higher efficiency to reveal minor defects on the bearing rings. Defects derive from either manufacturing or operational problems. Detecting of tiny manufacturing defects, especially manufacturing grinding marks is quite difficult due to their special geometrical shapes, however they can cause serious problems in machines during operation. Therefore, it is an important task to diagnose these marks with the most adequate methods. The transient vibration signal model of the defect is established for signals generated by tapered roller bearing on the outer race. The wavelet creation used the sub-optimal algorithm devised by Chapa and Rao. The applicability of the matched wavelet is tested for identifying this kind of bearing failure. The new wavelet analysis and synthesis filter coefficients are determined which define the designed wavelet. To determine the efficiency of the designed wavelet and to establish comparison with the other wavelets, a test-rig was constructed with high-precision measuring sensors and devices. By using the Maximum Energy-to-Shannon Entropy criteria the efficiency of the wavelets is determined. The designed wavelet is found to be the most effective to detect the manufacturing fault compared to the others in this article. The final purpose is not only to detect the faults but to determine their sizes. By analyzing the entry points of the rollers into the defects, the de-stressing point and the exit points of the rollers from the defects the width of the grinding marks is calculated. It is proved that the new-designed wavelet obtains the most precise way for fault width measurement. Finally, the size of the failure is measured by a contact type Mahr Perthometer to compare the results to the calculated parameters and validate them. The width deviation is only 1.18 % in the case of the new-designed wavelet which is remarkable precision level for bearing fault analysis.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyber-Physical System Aspects of Microstrip Patch Antenna of Radar Sensor Application;2022 23rd International Radar Symposium (IRS);2022-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3