Investigating the Effect of CuO/NiO and CuO/CoO Relative Composition on the Reduction Time of (CuO)x-(NiO)(1-x) and (CuO)x-(Co3O4)(1-x) with Methane Gas as the Reducing Agent in the Synthesis of Nano-bimetallic Nix-Cu(1-x) and Cux-Co(1-x)

Author:

Ghanbarabadi Hassan,Khoshandam Behnam

Abstract

In this paper, the reduction duration of (CuO)x-(NiO)(1-x) and (CuO)x-(Co3O4)(1-x) binary mixtures was studied using thermogravimetric method. The reduction reaction was performed using copper, nickel and cobalt oxides as metal precursors and methane gas as the reducing agent, under atmospheric pressure. The products as well as the raw materials were characterized and analyzed using X-Ray diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). Initially, CoO, NiO and CuO were transformed to Co, Ni and Cu through reduction reactions with 23 Vol.% of methane at 830 °C. Results demonstrated that the reduction times of NiO, CoO and CuO NPs with CH4 at 830 °C were 14, 39 and 47 min, respectively. EDS and XRD analysis indicated that more than 97 % of copper, nickel and cobalt oxides were transformed to copper, nickel and cobalt NPs. The reaction time of (CuO)x-(NiO)(1-x) and (CuO)x-(Co3O4)(1-x) binary mixtures with methane was investigated to evaluate the effect of CuO (x=0, 0.4, 0.6, 1) relative composition. In addition, the reaction time of ternary mixture of (NiO)0.6-(CuO)0.2-(Co3O4)0.2 with methane gas was also studied.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3