Mechanical Behavior and Application of a Novel Supporting and Retaining Structure for Slope

Author:

Xiao YuORCID,Liu Dongshuang,Liu Xinrong,Xie Yingkun,Han Yafeng,Xiong Fei

Abstract

This paper proposed a novel supporting and retaining structure used to high-steep building slope reinforcement. It combined with an anti-sliding pile and an inclined supporting column, which is used as a fulcrum on the upper part of pile. The mechanical characteristics of the novel supporting and retaining structure are studied firstly by two mechanical methods and two numerical methods, respectively. Result shows that the axial force will be evenly distributed along the column body and it provide a quite resistant force, meanwhile. There are two shear force concentrated areas of the anti-sliding pile, one is from the top of the embedded area of the pile body to the potential slip plane, the other is at the joint. Subsequently, the results of these methods are compared synthetically and the differences between the results are also discussed. It shows that a large shear force and moment will be caused at the restrained end of the pile body by the force method and 2D numerical model 1. And in Wenkler model and the 2D numerical model 2, the rock is considered non-rigid, the anti-sliding pile will produce a certain amount of deflection under the sliding thrust, which reduces the shear force and moment at the top of the embedded area of the pile body. Finally, the novel supporting and retaining structure is applied to the site, and the monitoring data shows that the novel supporting and retaining structure is economic and effective for the reinforcement of the high-steep building slope.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3