Rate Effects on Peak and Residual Strengths of Overconsolidated Clay in Ring Shear Tests

Author:

Duong Nguyen ThanhORCID,Suzuki Motoyuki

Abstract

Overconsolidated (OC) clay soil is widely distributed in landslide slopes. This soil is often fissured, jointed, contains slickensides, and is prone to sliding. Thus, the shear strength behavior of OC clayey soil is complicated and has received much attention in the literature and in practice in terms of evaluating and predicting landslide stability. However, the behavior of the shear strength of OC clayey soil at different shear rates, as seen in ring shear tests, is still only understood to a limited extent and should be examined further, especially in terms of the residual strength characteristics. In this study, a number of ring shear tests were conducted on kaolin clay at overconsolidation ratios (OCRs) ranging from 1 to 6 under different shear displacement rates in the wide range of 0.02 mm/min to 20.0 mm/min to investigate the shear behavior and rate dependency of the shear strength of OC clay. Variations in the cohesion and friction angles of OC clay under different shear rates were also examined. The results indicated that the rate effects on the peak strength of OC and normally consolidated (NC) clays are opposite at fast shear displacement rates. At the residual state, as with NC clay, the positive rate effect on the residual strength is also exhibited in OC clay, but at a lower magnitude. Regarding the shear strength parameters, the variations in the cohesion and friction angles of OC clay at different shear rates were found to be different at peak and residual states.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3