Tomographic Reconstruction of Atmospheric Water Vapor Profiles Using Multi-GNSS Observations

Author:

Turák Bence,Khaldi Abir,Rózsa Szabolcs

Abstract

Continuously operating reference stations (CORS) provide augmentation services for the highly accurate, cm-level GNSS positioning needs of land surveyors, agriculture, and even autonomous vehicles. These stations have accurate coordinates, thus they can be used to estimate the signal delay caused by the neutral atmosphere including the atmospheric water vapor. The estimated zenith wet delay (ZWD) is in a close correlation with the integrated water vapor in the atmospheric column. Since a ground station tracks several satellites at every epoch, one could also estimate the slant tropospheric delays, which can provide information on the spatial distribution of the atmospheric water vapor, too. This paper introduces a near real-time multi-GNSS processing approach to estimate slant wet tropospheric delays and a coupled tomographic reconstruction technique to estimate the 3D wet refractivity model that can be assimilated in numerical weather models. The estimated zenith tropospheric delays (ZTDs) and tropospheric gradients are used to restore the slant wet delays (SWD) affecting the observed satellite-receiver range. The SWDs are used as input for a tomographic reconstruction algorithm providing the wet refractivities in a pre-defined voxel model. The derived refractivity profiles have been validated with radiosonde observations. The results show that our GNSS tomography approach could reconstruct the refractivities with the uncertainty of 10 ppm below 3 km of altitude and of 0.3 ppm at the altitude of 10 km in terms of standard deviation.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3