Transformative Nanosized Organic Coatings with Euphorbia Condylocarpa/Poplar Tree Bark/Zircon Silicate Hybrid System for Enhanced Industrial Resilience

Author:

Yılmaz Kübra,Şahin Fatma İrem,Acaralı Nil

Abstract

This study focused on enhancing the properties of interior coatings by incorporating natural additives to minimize potential health impacts associated with traditional additives. Organic additives such as Euphorbia condylocarpa, poplar tree bark, and zircon silicate were employed by utilizing Design Expert for optimization. The optimized formulation demonstrated impressive attributes including the prevention of bacterial and mold growth, high corrosion resistance, effective coverage and adhesion, and resistance to dirt retention. The recommended optimum formulation, Euphorbia condylocarpa (1%), poplar tree bark (1%), and zircon silicate (1%) by using the 2FI model, exhibited an R2 value of 0.9838, indicating a remarkable predictability of the variability in the experimental data. This result emphasized the effectiveness of the proposed model in optimizing the properties of nanosized organic coatings for various industrial applications. Thermogravimetric and differential thermal analysis (TG-DTA) revealed that the additives contributed to the development of flame-retardant properties as the temperature increased and morphology of coating was obtained with optical microscope and scanning electron microscope (SEM). Specifically, Euphorbia condylocarpa exhibited antibacterial, flame-retardant, and hydrophobic properties. The study concluded that the incorporation of euphorbia plant, poplar tree bark, and zircon silicate substances positively impacted the performance of coatings offering a more health-conscious and technologically advanced alternative.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3