A Visco-hypoplastic Constitutive Model for Rolled Asphalt

Author:

Gajári György,Kisgyörgy Lajos,Ádány Sándor,Mahler András,Lógó János

Abstract

Experience has shown that the durability of “high-modulus” asphalts made with modified bitumen is unsatisfactory. The misdirected “development” forced in recent decades necessitates a more accurate understanding of the mechanical behavior of rolled asphalts, i.e., constitutive formulation of a numerical asphalt model. The authors elaborate a numerical procedure to model the visco-hypoplastic constitutive behavior of the rolled asphalts by the appropriate composition of the hypoplastic theory of soil mechanics and, taking into account the existing asphalt models. This proposal is justified because rolled asphalt is nothing more than an aggregate skeleton of mineral origin, the voids of which are filled with high-viscosity bitumen. The model allows to quantify the interaction of the two components, such as the formation of ruts due to pressure on the bitumen, the formation of cracks due to cooling-induced tensile stresses, and the viscous behavior of asphalt. Validity of this complex numerical model can already be considered proven theoretically, but it still needs to be experimentally verified for the viscous behavior. This new constitutive model has important theoretical and practical consequences such as a new visco-hypoplastic model of rolled asphalt as partially saturated granular material with cooling-induced isotropic residual stresses.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3