Topology Optimization – a Variational Formulation of the Problem and Example Application

Author:

Kutylowski Ryszard,Szwechłowicz Marek

Abstract

A variational formulation of the topology optimization problem is presented. A strain energy functional, being an equivalent of compliance, was minimized while constraints were imposed on the body mass. A global mass constraint and a local constraint on the amount of mass accumulated in a single material point of the body were adopted. A penalization procedure was defined and implemented in the optimization process to speed up the latter. The procedure in the successive optimization process steps translocates mass within the design domain, from the less strained areas to the more strained ones. The optimization process was described as a series of sequences of topologies determined using various control parameters, including different threshold functions. This means that the optimization process is characterized by a sequence of objective functional values approaching a minimal value. Various functions updating Young’s modulus were considered. Primarily the updating method referred to as SIMP was adopted. Three ways of using the discrete strain energy value to update Young's modulus in the considered material point were taken into account. These were: the amount of energy accumulated in the preceding step, the sum of the amounts of energy from all the preceding steps and the average amount of energy from the last two steps. In order to ensure the global limiting condition a mass constancy satisfaction procedure was incorporated into the algorithm. The algorithm procedures are described in detail. Finally, the algorithm was used to analyze selected problem relating to the pavement structure and the structure of tall buildings.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3