Characterization and the Effect of Different Parameters on Photocatalytic Activity of Montmorillonite/TiO2 Nanocomposite under UVC Irradiation

Author:

Dao Tam Thi Bang,Ha Loan Thi Thu,Le Nhien Hon,Nguyen Do Trung,Nguyen Truong Huu,Ha-Thuc Chi-Nhan

Abstract

This study aimed to modify montmorillonite (MMT) with titanium dioxide (TiO2) by wet stirring method combined with ultrasonic to form MMT/TiO2 nanocomposite and used as a photocatalyst in the removal of organic dye rhodamine B (RhB). The characteristics of the synthesized samples were analyzed by methods such as energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). The degradation of RhB was carried out for 210 min under UVC irradiation, and the decolorization efficiency of RhB was evaluated by UV-vis spectroscopy. The results show that the TiO2 anatase nanoparticles are randomly distributed on the surface or the space between the MMT sheets to form a house-of-card structure. After 210 min of exposure under a UVC light source, the decolorization efficiency reached 91.5% for the solution with pH = 6.8, photocatalyst content 0.1 g/L, initial concentration RhB 10 mg/L, and UVC power 15 W. Liquid chromatography–mass spectrometry (LCMS) identified the degradation intermediates that MMT/TiO2 successfully cleaved the chromophore structure and formed more minor broken-ring by-products. The influence of operating parameters on RhB removal efficiency, including solution pH, photocatalyst content, initial dye concentration, inorganic, and organic scavengers, was studied. In addition, the kinetic modeling study shows that the RhB photodegradation reaction is consistent with the Langmuir-Hinshelwood first-order kinetic model.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3